Sunday, 27 September 2015

algebra precalculus - Find the sum to n terms of the series $frac{1} {1cdot2cdot3cdot4} + frac{1} {2cdot3cdot4cdot5} + frac{1} {3cdot4cdot5cdot6}ldots $




Find the sum to n terms of the series $\frac{1} {1\cdot2\cdot3\cdot4} + \frac{1} {2\cdot3\cdot4\cdot5} + \frac{1} {3\cdot4\cdot5\cdot6}\ldots $



Please suggest an approach for this task.


Answer



$\dfrac{1}{k(k+1)(k+2)(k+3)} = \dfrac{1}{3} (\dfrac{k+3}{k(k+1)(k+2)(k+3)} - \dfrac{k}{k(k+1)(k+2)(k+3)})$
$ = \dfrac{1}{3}(\dfrac{1}{k(k+1)(k+2)} - \dfrac{1}{(k+1)(k+2)(k+3)})$



$\sum_{k=1}^{\infty}\dfrac{1}{k(k+1)(k+2)(k+3)} = \dfrac{1}{3} \dfrac{1}{2*3} = \dfrac{1}{18}$




@moron Yes, you are right. For the first n terms:



$\sum_{k=1}^{n}\dfrac{1}{k(k+1)(k+2)(k+3)} = \dfrac{1}{3} (\dfrac{1}{1*2*3} - \dfrac{1}{(n+1)(n+2)(n+3)})$



[edit] more details



$\sum_{k=1}^{n}\dfrac{1}{k(k+1)(k+2)(k+3)} = \sum_{k=1}^{n} \dfrac{1}{3} (\dfrac{1}{k(k+1)(k+2)} - \dfrac{1}{(k+1)(k+2)(k+3)})$
$= \dfrac{1}{3} [\sum_{k=1}^{n} \dfrac{1}{k(k+1)(k+2)} - \sum_{k=1}^{n} \dfrac{1}{(k+1)(k+2)(k+3)}]$
$= \dfrac{1}{3} [\sum_{k=0}^{n-1} \dfrac{1}{(k+1)(k+2)(k+3)} - \sum_{k=1}^{n} \dfrac{1}{(k+1)(k+2)(k+3)}]$
$= \dfrac{1}{3} (\dfrac{1}{1*2*3} - \dfrac{1}{(n+1)(n+2)(n+3)})$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...