Saturday, 12 September 2015

calculus - If limlimitsxtoinftyf(x)=ell then find limlimitsxtoinftyfracf(6x)x.





Let f:[0,)R be continuously differentiable. If limxf(x)= for real number \ell, then find \lim _{x \to \infty} \frac{f(6x)}{x}




Mt attempt:
By L'Hospital rule
\lim _{x \to \infty} \frac{f(6x)}{x}=6\lim _{x \to \infty} f'(6x)=6\ell. Am I right?


Answer




Without Hospital Only Using the fundamental theorem of Calculus we have,





f(6x) =f(0) +\int_0^x 6f'(6t)dt\overset{t=xu}{=}f(0) +x\int_0^1 6f'(6\color{blue}{xu})dt,~~ x>0.



Thus, since [0,1] is compact and \lim\limits_{x\to\infty}f'(x)= \ell we get,
\lim _{x \to \infty} \frac{f(6x)}{x} =\lim _{x \to \infty}\left(\frac{f(0)}{x}+ 6\int_0^1 f'(6\color{blue}{xu})du\right) =6\ell


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...