Tuesday, 29 September 2015

calculus - Calculating limxrightarrow0fractanxsinxx3.



I have a difficulty in calculating this limit:



lim



I have tried \tan x = \frac{\sin x}{\cos x}, then I unified the denominator of the numerator of the given limit problem finally I got \lim_{x \rightarrow 0} \frac{\sin x}{x^{3} \cos x} - \lim_{x \rightarrow 0} \frac{ \sin x}{x^3},



Then I got stucked, could anyone help me in solving it?


Answer




For x\ne0,



{\tan x-\sin x\over x^3}=\left({\sin x\over x}\right)^3\dfrac1{\cos x \,(1+\cos x)}



Now as x\to0,x\ne0


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...