Tuesday, 29 September 2015

calculus - Calculating $lim_{x rightarrow 0} frac{tan x - sin x}{x^3}$.



I have a difficulty in calculating this limit:



$$\lim_{x \rightarrow 0} \frac{\tan x - \sin x}{x^3},$$



I have tried $\tan x = \frac{\sin x}{\cos x}$, then I unified the denominator of the numerator of the given limit problem finally I got $$\lim_{x \rightarrow 0} \frac{\sin x}{x^{3} \cos x} - \lim_{x \rightarrow 0} \frac{ \sin x}{x^3},$$



Then I got stucked, could anyone help me in solving it?


Answer




For $x\ne0,$



$${\tan x-\sin x\over x^3}=\left({\sin x\over x}\right)^3\dfrac1{\cos x \,(1+\cos x)}$$



Now as $x\to0,x\ne0$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...