Friday 25 September 2015

trigonometry - Problem in the properties of limit: $limlimits_{x tofrac{pi}{3}}frac{sinleft(x-frac{pi}{3}right)}{1-2cosleft(xright)}$




$$\lim\limits_{x \to\frac{\pi}{3}}\frac{\sin\left(x-\frac{\pi}{3}\right)}{1-2\cos\left(x\right)}$$





I used the following property:
if $$\lim\limits_{\large x \to\frac{\pi}{3}}f(x)=L$$
then $$\lim\limits_{x \to\frac{\pi}{3}}\frac{1}{f\left(x\right)}=\frac{1}{L}$$



where $L$ is a real number and nonzero,hence we have:



$$\lim\limits_{\large x \to\frac{\pi}{3}}\frac{1-2\cos\left(x\right)}{\sin\left(x-\frac{\pi}{3}\right)}$$



substititute $x-\frac{\pi}{3}=u$:




$$\lim\limits_{\large u \to 0}\frac{1-2\cos\left(u+\frac{\pi}{3}\right)}{\sin\left(u\right)}$$$$=\lim\limits_{\large u \to 0}\frac{1-\cos\left(u\right)+\sqrt{2}\sin\left(u\right)}{\sin\left(u\right)}=\lim\limits_{\large u \to 0}\frac{1-\cos\left(u\right)}{\sin\left(u\right)}+\sqrt{2}$$$$=\lim\limits_{\large u \to 0}\frac{\sin\left(u\right)}{1+\cos\left(u\right)}+\sqrt{2}=\sqrt{2}$$



hence the main limit should be $\frac{1}{\sqrt{2}}$which is wrong, but I don't know why, also is there any way to solve the problem without using Taylor series or L'hopital's rule?


Answer



Your derivation is absolutely fine and right, but we have that



$$1-2\cos\left(u+\frac{\pi}{3}\right)=1-2\frac12\cos u+2\frac {\sqrt 3} 2\sin u=1-\cos u+\color{red}{\sqrt 3}\sin u$$



therefore




$$\lim\limits_{x \to\frac{\pi}{3}}\frac{\sin\left(x-\frac{\pi}{3}\right)}{1-2\cos\left(x\right)}=\frac1{\sqrt 3}$$



Note also that we don't need to invert the expression, indeed in the same way we have



$$\lim\limits_{\large u \to 0}\frac{\sin\left(u\right)}{1-2\cos\left(u+\frac{\pi}{3}\right)}=\lim\limits_{\large u \to 0}\frac{\sin\left(u\right)}{1-\cos u+\sqrt 3\sin u}=\lim\limits_{\large u \to 0}\frac{1}{\frac{1-\cos u}{\sin u}+\sqrt 3}=\frac1{\sqrt 3}$$



since



$$\frac{1-\cos u}{\sin u}=u\frac{1-\cos u}{u^2}\frac{u}{\sin u}\to 0$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...