lim
I used the following property:
if \lim\limits_{\large x \to\frac{\pi}{3}}f(x)=L
then \lim\limits_{x \to\frac{\pi}{3}}\frac{1}{f\left(x\right)}=\frac{1}{L}
where L is a real number and nonzero,hence we have:
\lim\limits_{\large x \to\frac{\pi}{3}}\frac{1-2\cos\left(x\right)}{\sin\left(x-\frac{\pi}{3}\right)}
substititute x-\frac{\pi}{3}=u:
\lim\limits_{\large u \to 0}\frac{1-2\cos\left(u+\frac{\pi}{3}\right)}{\sin\left(u\right)}=\lim\limits_{\large u \to 0}\frac{1-\cos\left(u\right)+\sqrt{2}\sin\left(u\right)}{\sin\left(u\right)}=\lim\limits_{\large u \to 0}\frac{1-\cos\left(u\right)}{\sin\left(u\right)}+\sqrt{2}=\lim\limits_{\large u \to 0}\frac{\sin\left(u\right)}{1+\cos\left(u\right)}+\sqrt{2}=\sqrt{2}
hence the main limit should be \frac{1}{\sqrt{2}}which is wrong, but I don't know why, also is there any way to solve the problem without using Taylor series or L'hopital's rule?
Answer
Your derivation is absolutely fine and right, but we have that
1-2\cos\left(u+\frac{\pi}{3}\right)=1-2\frac12\cos u+2\frac {\sqrt 3} 2\sin u=1-\cos u+\color{red}{\sqrt 3}\sin u
therefore
\lim\limits_{x \to\frac{\pi}{3}}\frac{\sin\left(x-\frac{\pi}{3}\right)}{1-2\cos\left(x\right)}=\frac1{\sqrt 3}
Note also that we don't need to invert the expression, indeed in the same way we have
\lim\limits_{\large u \to 0}\frac{\sin\left(u\right)}{1-2\cos\left(u+\frac{\pi}{3}\right)}=\lim\limits_{\large u \to 0}\frac{\sin\left(u\right)}{1-\cos u+\sqrt 3\sin u}=\lim\limits_{\large u \to 0}\frac{1}{\frac{1-\cos u}{\sin u}+\sqrt 3}=\frac1{\sqrt 3}
since
\frac{1-\cos u}{\sin u}=u\frac{1-\cos u}{u^2}\frac{u}{\sin u}\to 0
No comments:
Post a Comment