Tuesday, 29 September 2015

contest math - Polynomial $P(a)=b,P(b)=c,P(c)=a$



Let $a,b,c$ be $3$ distinct integers, and let $P$ be a polynomial with integer coefficients.Show that in this case the conditions $$P(a)=b,P(b)=c,P(c)=a$$ cannot be satisfied simultaneously.



Any hint would be appreciated.


Answer



Hint: If $P(a)=b$ and $P(b)=c$ then $a-b$ divides $b-c$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...