I have an equality:
¨a30=10.75(∞∑k=0(11.06)k(1−30+k120))=(∞∑k=0(11.06)k−190∞∑k=0k(11.06)k)
How from 10.75(∑∞k=0(11.06)k(1−30+k120)) we get (∑∞k=0(11.06)k−190∑∞k=0k(11.06)k)?
Because I do not understand where we lost 10,75 in the first sum.
How to find limh→0sin(ha)h without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment