Thursday, 17 September 2015

Distinct Mersenne numbers are coprime

How can you prove that if $p$ and $q$ are distinct primes, then the following holds?:



$$(M_p,M_q)=1$$




Note: $M_n=2^n-1$, with $n$ prime number

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...