I want to determine if the integral $\,\displaystyle\int_0^\infty\displaystyle\int_x^\infty\frac{1}{\sqrt{t^{3}+1}}\,\mathrm{d}t\,\mathrm{d}x$ converges.
I know that $\displaystyle\int_x^\infty\frac{1}{\sqrt{t^{3}+1}}\,\mathrm{d}t$ converges for all $x \geq 0$ and can show this by the comparison theorem. I just am not sure how to use this fact to justify the convergence or divergence of $\displaystyle\int_0^\infty\displaystyle\int_x^\infty\frac{1}{\sqrt{t^{3}+1}}\,\mathrm{d}t\,\mathrm{d}x$.
Could someone point me in the right direction?
Thanks!
No comments:
Post a Comment