Tuesday, 29 September 2015

definite integrals - Finding the value of a sum using Riemann sum theorem





Question: Find the value of $\sum_{i=1}^{n}(\frac{1}{n-i})^{c}$ for large $n$.




\begin{align}
\sum_{i=1}^{n}(\frac{1}{n-i})^{c}
& = \sum_{i=1}^{n}(\frac{1}{n})^{c}(\frac{1}{1-\frac{i}{n}})^{c}
\\ & = \frac{n}{n} \times \sum_{i=1}^{n}(\frac{1}{n})^{c}(\frac{1}{1-\frac{i}{n}})^{c}
\\ & = n(\frac{1}{n})^{c} \sum_{i=1}^{n}\frac{1}{n}(\frac{1}{1-\frac{i}{n}})^{c} \qquad(1)
\end{align}




Let $f(x) = (\frac{1}{1-x})^{c}$, by using Riemann-sum theorem, we have
\begin{align}
\lim_{n\rightarrow \infty}\sum_{i=1}^{n}\frac{1}{n}(\frac{1}{1-\frac{i}{n}})^{c}
& = \int_{0}^{1} (\frac{1}{1-x})^{c} = A \qquad(2)
\end{align}
By using $(1)$ and $(2)$, for sufficently large $n$, we have
$$\bbox[5px,border:2px solid #C0A000]{\sum_{i=1}^{n}(\frac{1}{n-i})^{c} = A\times n(\frac{1}{n})^{c}}$$





The presented proof has a problem, $f(x)$ is not defined in the closed interval $[0,1]$. How can I solve this problem?







Definition (Riemann-sum theorem) Let $f(x)$ be a function dened on a closed interval $[a, b]$. Then, we have
$$\lim_{n\rightarrow \infty}\sum_{i=1}^{n}f\Big(a +(\frac{b - a}{n})i\Big)\frac{1}{n}=\int_{a}^{b}f(x)dx$$


Answer



\begin{align}\label{eq:7777}
& \frac{2}{\sqrt{n-i} + \sqrt{n-i+1}} \leq \frac{1}{\sqrt{n-i}} \leq \frac{2}{\sqrt{n-i} + \sqrt{n-i-1}} \nonumber\\

& \qquad \Rightarrow 2(\sqrt{n-i+1} - \sqrt{n-i}) \leq \frac{1}{\sqrt{n-i}} \leq 2(\sqrt{n-i} - \sqrt{n-i-1}) \nonumber\\
& \qquad \Rightarrow 2 \sum_{i=1}^{n-1}(\sqrt{n-i+1} - \sqrt{n-i}) \leq \sum_{i=1}^{n-1} \frac{1}{\sqrt{n-i}} \leq 2 \sum_{i=1}^{n-1}(\sqrt{n-i} - \sqrt{n-i-1}) \nonumber\\
& \qquad \Rightarrow 2 (\sqrt{n}-1) \leq \sum_{i=1}^{n-1} \frac{1}{\sqrt{n-i}} \leq 2 \sqrt{n-1}
\end{align}


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...