Question: Find the value of ∑ni=1(1n−i)c for large n.
n∑i=1(1n−i)c=n∑i=1(1n)c(11−in)c=nn×n∑i=1(1n)c(11−in)c=n(1n)cn∑i=11n(11−in)c(1)
Let f(x)=(11−x)c, by using Riemann-sum theorem, we have
lim
By using (1) and (2), for sufficently large n, we have
\bbox[5px,border:2px solid #C0A000]{\sum_{i=1}^{n}(\frac{1}{n-i})^{c} = A\times n(\frac{1}{n})^{c}}
The presented proof has a problem, f(x) is not defined in the closed interval [0,1]. How can I solve this problem?
Definition (Riemann-sum theorem) Let f(x) be a function dened on a closed interval [a, b]. Then, we have
\lim_{n\rightarrow \infty}\sum_{i=1}^{n}f\Big(a +(\frac{b - a}{n})i\Big)\frac{1}{n}=\int_{a}^{b}f(x)dx
Answer
\begin{align}\label{eq:7777} & \frac{2}{\sqrt{n-i} + \sqrt{n-i+1}} \leq \frac{1}{\sqrt{n-i}} \leq \frac{2}{\sqrt{n-i} + \sqrt{n-i-1}} \nonumber\\ & \qquad \Rightarrow 2(\sqrt{n-i+1} - \sqrt{n-i}) \leq \frac{1}{\sqrt{n-i}} \leq 2(\sqrt{n-i} - \sqrt{n-i-1}) \nonumber\\ & \qquad \Rightarrow 2 \sum_{i=1}^{n-1}(\sqrt{n-i+1} - \sqrt{n-i}) \leq \sum_{i=1}^{n-1} \frac{1}{\sqrt{n-i}} \leq 2 \sum_{i=1}^{n-1}(\sqrt{n-i} - \sqrt{n-i-1}) \nonumber\\ & \qquad \Rightarrow 2 (\sqrt{n}-1) \leq \sum_{i=1}^{n-1} \frac{1}{\sqrt{n-i}} \leq 2 \sqrt{n-1} \end{align}
No comments:
Post a Comment