Wednesday, 30 September 2015

calculus - Proving intinfty0fracln(t)sqrttetmathrmdt=sqrtpi(gamma+ln4)



I would like to prove that:




0ln(t)tetdt=π(γ+ln4)



I tried to use the integral n0ln(t)t(1tn)ndt



n0ln(t)t(1tn)ndtn0ln(t)tetdt (dominated convergence theorem)



Using the substitution ttn, I get:



n0ln(t)t(1tn)ndt=n(ln(n)10(1t)ntdt+10ln(t)(1t)ntdt)




However I don't know if I am on the right track for these new integrals look quite tricky.


Answer



Consider integral representation for the Euler Γ-function:
Γ(s)=0ts1etdt
Differentiate with respect to s:
Γ(s)ψ(s)=0ts1ln(t)etdt

where ψ(s) is the digamma function.
Now substitute s=12. So
0ln(t)tetdt=Γ(12)ψ(12)
Now use duplication formula:
Γ(2s)=Γ(s)Γ(s+1/2)22s1π
Differentiating this with respect to s gives the duplication formula for ψ(s), and substitution of s=1/2 gives Γ(1/2)=π.

ψ(2s)=12ψ(s)+12ψ(s+1/2)+log(2)
Substitute s=12 and use ψ(1)=γ to arrive at the result.


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...