Problem: Find the last digit of $3^{1999}$.
My answer is $3$, but the answer sheet says $7$.
Here is what I did:
- $3^{1999}=(3^9)^{222}\cdot3$
- Using Fermat's Little Theorem: $3^9\equiv1\pmod{10}$
- Therefore, $3^{1999}\equiv(3^9)^{222}\cdot3\equiv1^{222}\cdot3\equiv3\pmod{10}$
- Therefore, the last digit should be $3$
Where did I go wrong?
Answer
Here's a straightforward alternative that does not require Euler's or Fermat's, and only requires noticing that
$$3^2 \equiv -1 \pmod {10}$$ so that
$$\begin{align}3^{1999} &= (3^2)^{999}\cdot3\\&\equiv (-1)^{999}\cdot3\pmod{10}\\&\equiv-3\pmod{10}\\&\equiv{7}\pmod{10}\end{align}$$
No comments:
Post a Comment