Wednesday, 23 September 2015

elementary number theory - Find the last digit of $3^{1999}$




Problem: Find the last digit of $3^{1999}$.




My answer is $3$, but the answer sheet says $7$.




Here is what I did:




  • $3^{1999}=(3^9)^{222}\cdot3$

  • Using Fermat's Little Theorem: $3^9\equiv1\pmod{10}$

  • Therefore, $3^{1999}\equiv(3^9)^{222}\cdot3\equiv1^{222}\cdot3\equiv3\pmod{10}$

  • Therefore, the last digit should be $3$




Where did I go wrong?


Answer



Here's a straightforward alternative that does not require Euler's or Fermat's, and only requires noticing that



$$3^2 \equiv -1 \pmod {10}$$ so that
$$\begin{align}3^{1999} &= (3^2)^{999}\cdot3\\&\equiv (-1)^{999}\cdot3\pmod{10}\\&\equiv-3\pmod{10}\\&\equiv{7}\pmod{10}\end{align}$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...