Friday, 11 September 2015

real analysis - Checking convergence of a sequence

For $n \geq 1$, is the sequence $(x_n)_{n=1}^{\infty}$ where:
$$x_n=1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}-2\sqrt{n}$$ convergent?



I started with $x_{n+1}-x_{n}=\frac{\sqrt{n(n+1)}-(2n+1)}{\sqrt{n+1}}\leq 0$ since geometric mean does not exceed algebraic mean, thus decreasing, but what about convergence?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...