Tuesday, 29 September 2015

sequences and series - Show (1+fraczn)nundersetnto+inftylongrightarrowez


To show that zn=(1+zn)nexp(z)n+
the author of textbook use the following method but there is some steps that i'm not sure if i got it right so would someone elaborate it




Let x=(z) and y=(z)





  • rn=(1+xn)2+y2n2=1+2xn+o(1n)=1+xn+o(xn)

  • why if rn=1+xn+o(xn) then ln(rn)xn

  • how we can get the expression of tan(αn)

  • why if tan(αn)yn then αnyn



enter image description here



My thoughts:




first i think there is typo in zn=rnnenαn should we write zn=rnneinαn instead.




  • rn=(1+xn)2+y2n2=1+2xn+o(1n)=1+xn+o(xn)



note that





(1+x)α=x01+αx+o(x)




{(1+xn)2=1+2xn+o(1n)y2n2=o(1n)1+2xn+o(1n)



on the other hand
1+2xn+o(1n)=(1+2xn+o(1n))12=1+12(2xn+o(1n))+o(o(1n))=1+xn+o(1n)+o(1n)=1+xn+o(1n)
then rn=1+xn+o(1n)




  • why if rn=1+xn+o(xn) then ln(rn)xn



note that :





if unvn and vnwn then unwn
unvnun=vn+o(vn)




i can't show this




  • how we can get the expression of tan(αn)





If a+ib=ρeiθ with a>0 then tan(θ)=ba




since (1+zn)=(1+xn)+iyn=rneiαn then
tan(αn)=yn1+xn=yx+n
tan(αn)=yx+n




  • why if tan(αn)yn then αnyn





if unvn and vnwn then unwn




So should show that αnn+0 to be able to say that tan(αn)rn



we've tan(αn)=yx+n then αn=arctan(yx+n)
lim

then \begin{cases}\tan(\alpha_n) \sim \alpha_n \\ \tan(\alpha_n)\sim \dfrac{y}{n} \end{cases} \implies \alpha_n\sim \dfrac{y}{n}




  • If my proof wrong would you elaborate the steps

No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...