To show that zn=(1+zn)n⟶exp(z)n⟼+∞
the author of textbook use the following method but there is some steps that i'm not sure if i got it right so would someone elaborate it
Let x=ℜ(z) and y=ℑ(z)
- rn=√(1+xn)2+y2n2=√1+2xn+o(1n)=1+xn+o(xn)
- why if rn=1+xn+o(xn) then ln(rn)∼xn
- how we can get the expression of tan(αn)
- why if tan(αn)∼yn then αn∼yn
My thoughts:
first i think there is typo in zn=rnnenαn should we write zn=rnneinαn instead.
- rn=√(1+xn)2+y2n2=√1+2xn+o(1n)=1+xn+o(xn)
note that
(1+x)α=x→01+αx+o(x)
{(1+xn)2=1+2xn+o(1n)y2n2=o(1n)⟹1+2xn+o(1n)
on the other hand
√1+2xn+o(1n)=(1+2xn+o(1n))12=1+12(2xn+o(1n))+o(o(1n))=1+xn+o(1n)+o(1n)=1+xn+o(1n)
then rn=1+xn+o(1n)
- why if rn=1+xn+o(xn) then ln(rn)∼xn
note that :
if un∼vn and vn∼wn then un∼wn
un∼vn⟺un=vn+o(vn)
i can't show this
- how we can get the expression of tan(αn)
If a+ib=ρeiθ with a>0 then tan(θ)=ba
since (1+zn)=(1+xn)+iyn=rneiαn then
tan(αn)=yn1+xn=yx+n
tan(αn)=yx+n
- why if tan(αn)∼yn then αn∼yn
if un∼vn and vn∼wn then un∼wn
So should show that αn⟶n→+∞0 to be able to say that tan(αn)∼rn
we've tan(αn)=yx+n then αn=arctan(yx+n)
lim
then \begin{cases}\tan(\alpha_n) \sim \alpha_n \\ \tan(\alpha_n)\sim \dfrac{y}{n} \end{cases} \implies \alpha_n\sim \dfrac{y}{n}
- If my proof wrong would you elaborate the steps
No comments:
Post a Comment