Monday, 2 January 2017

number theory - Using Fermat's little theorem



I have this question:



$a \equiv 12^{772} \pmod{71}$, when $0 \leq a < 71$



and I am having troubles getting it started.




$\frac{772}{71}$ is $10$ with a remainder of $62$;



How do I do this question?


Answer



$12^{772}=12^{71\cdot 10+62}\equiv 12^{10+62}=12^{71+1}\equiv 12\cdot 12=144\equiv 2$ mod $71$. So $a=2$.



Alternately,



$12^{772}=12^{70\cdot 11+2}\equiv 12^2=144\equiv 2$ mod $71$.




The first one uses the form $a^p\equiv a$ mod $p$ and the second uses the form $a^{p-1}\equiv 1$ mod $p$ if $gcd(a,p)=1$ where $p$ is prime.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...