Monday, 2 January 2017

sequences and series - $underset{nrightarrow +infty }{overset{}{lim }} left(sqrt[n]{2} -1right)^{n} =0$



Prove that:



$$\underset{n\rightarrow +\infty }{\overset{}{\lim }} \ \left(\sqrt[n]{2} -1\right)^{n} =0$$



I would like a solution without integral, limit of real functions or others advanced methods.
I thought $\underset{n\rightarrow +\infty }{\overset{}{\lim }} \ 2\left(1- \frac{1}{\sqrt[n]2}\right)^{n} =0$ but I don't know how to continue.


Answer




It is a limit of the form
$$0^{\infty}$$



so it is not an indeterminate form, it converges to $0$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...