Wednesday, 9 September 2015

calculus - Mean Value theorem problem?(inequality)



I'm trying to solve this mean value theorem problem but confused where to start,





If $0



Can someone please lend me a hand?


Answer



Apply the mean value theorem to the function $x\mapsto \ln x$ on the interval $[a,b]$: $\exists c\in(a,b)$ such that
$$1-\frac b a=\frac {b-a} b<\ln b-\ln a=\ln \frac{b} {a}=(b-a)\frac 1 c<\frac {b-a} a=\frac b a-1$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...