Tuesday, 8 September 2015

limits - Result of $lim_{ntoinfty} frac{{x}^{100n}}{n!}$



The task is to $\lim_{n\to\infty} \frac{{x}^{100n}}{n!}$. n is an integer. I've tried to use Stolz theorem, but that doesn't seem to give any result.




Thank you for your help.


Answer



By ratio test



$$\frac{{x}^{100(n+1)}}{(n+1)!}\frac{n!}{{x}^{100n}}=\frac{x^{100}}{n+1}\to 0$$



then



$$\lim_{n\to\infty} \frac{{x}^{100n}}{n!}=0$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...