Wednesday, 9 September 2015

real analysis - Limit limlimitsntoinftysqrt[n]frac1sqrt3left(left(frac1+sqrt32right)nleft(frac1sqrt32right)nright)



I have problems with finding: lim I tried to do it following way:



\displaystyle\lim_{n\to\infty} \sqrt[n]{{\frac{1}{\sqrt{3}}\Bigg(\Bigg(\frac{1+\sqrt{3}}{2}\Bigg)^n}-\Bigg(\frac{1-\sqrt{3}}{2}\Bigg)^n\Bigg)}



\displaystyle\lim_{n\to\infty} \sqrt[n]{\frac{1}{\sqrt{3}}}\cdot\lim_{n\to\infty} \sqrt[n]{\Bigg(\Bigg(\frac{1+\sqrt{3}}{2}\Bigg)^n-\Bigg(\frac{1-\sqrt{3}}{2}\Bigg)^n\Bigg)}=



1\cdot\displaystyle\lim_{n\to\infty} \sqrt[n]{\Bigg(\Bigg(\frac{1+\sqrt{3}}{2}\Bigg)^n-\Bigg(\frac{1-\sqrt{3}}{2}\Bigg)^n\Bigg)}




Now I used formula for difference of powers:



\Big(\frac{1+\sqrt{3}}{2}\Big)^n-\Big(\frac{1-\sqrt{3}}{2}\Big)^n=\Big(\frac{1+\sqrt{3}}{2}-\frac{1-\sqrt{3}}{2}\Big)\cdot\Big( \Big(\frac{1+\sqrt{3}}{2}\Big)^{n-2}\Big(\frac{1+\sqrt{3}}{2}\Big)+\Big(\frac{1+\sqrt{3}}{2}\Big)^{n-3}\Big(\frac{1+\sqrt{3}}{2}\Big)\Big(\frac{1-\sqrt{3}}{2}\Big)+\Big(\frac{1+\sqrt{3}}{2}\Big)^{n-4}\Big(\frac{1+\sqrt{3}}{2}\Big)\Big(\frac{1-\sqrt{3}}{2}\Big)+...+\Big(\frac{1-\sqrt{3}}{2}\Big)^{n-1}\Big)



In the last parenthesis, I saw two geometric series and I tried to add them, however, it quickly appeared that there will be other geometric series and here is where I am a bit helpless (it is getting very nasty very quickly). Do you have any hints to move it in maybe another way? I would be very grateful, thanks!


Answer



For the beginning prove the following facts
\lim\limits_{n\to\infty} \sqrt[n]{a}=1 \quad\text{ for }\quad a>0
\lim\limits_{n\to\infty} \sqrt[n]{x^n-y^n}=x\quad\text{ for }\quad x>|y|
then apply them to the limit
\lim\limits_{n\to\infty}\sqrt[n]{a(x^n-y^n)}


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...