My attempt:
Using Arithmetic Mean $\ge$ Geometric Mean for $a_1, a_2, ..., a_n$,
$$ \frac{a_1+a_2+...+a_n}{n} \ge \sqrt[n]{a_1.a_2....a_n} $$
$$ \Rightarrow a_1+a_2+...+a_n \ge n $$
Therefore, $$ \frac{(1+a_1)+(1+a_2)+...+(1+a_n)}{n} = \frac{(1+1+... n\;times) + (a_1+a_2+...+a_n)}{n} = \frac{n + (a_1+a_2+...+a_n)}{n} \ge \frac{n+n}{n} $$
Or simply, $$ \frac{(1+a_1)+(1+a_2)+...+(1+a_n)}{n} \ge 2 $$
Now, Using Arithmetic Mean $\ge$ Geometric Mean for $(1+a_1), (1+a_2), ..., (1+a_n)$,
$$ \frac{(1+a_1)+(1+a_2)+...+(1+a_n)}{n} \ge \sqrt[n]{(1+a_1).(1+a_2)....(1+a_n)} $$
But, $$ \frac{(1+a_1)+(1+a_2)+...+(1+a_n)}{n} \ge \sqrt[n]{(1+a_1).(1+a_2)....(1+a_n)}\;\;\;\;and\;\;\;\;\frac{(1+a_1)+(1+a_2)+...+(1+a_n)}{n} \ge 2 $$
don't necessarily imply that $$ \sqrt[n]{(1+a_1).(1+a_2)....(1+a_n)} \ge 2 $$
This is where I require help to proceed further.
No comments:
Post a Comment