My attempt:
Using Arithmetic Mean ≥ Geometric Mean for a1,a2,...,an,
a1+a2+...+ann≥n√a1.a2....an
⇒a1+a2+...+an≥n
Therefore, (1+a1)+(1+a2)+...+(1+an)n=(1+1+...ntimes)+(a1+a2+...+an)n=n+(a1+a2+...+an)n≥n+nn
Or simply, (1+a1)+(1+a2)+...+(1+an)n≥2
Now, Using Arithmetic Mean ≥ Geometric Mean for (1+a1),(1+a2),...,(1+an),
(1+a1)+(1+a2)+...+(1+an)n≥n√(1+a1).(1+a2)....(1+an)
But, (1+a1)+(1+a2)+...+(1+an)n≥n√(1+a1).(1+a2)....(1+an)and(1+a1)+(1+a2)+...+(1+an)n≥2
don't necessarily imply that n√(1+a1).(1+a2)....(1+an)≥2
This is where I require help to proceed further.
No comments:
Post a Comment