Calculate:
$$\lim_{x \to 0^+}\frac{\tan x \cdot \sqrt {\tan x}-\sin x \cdot \sqrt{\sin x}}{x^3 \sqrt{x}}$$
I don't know how to use L'Hôpital's Rule.
I tried to make $\tan x =\frac{\sin x}{\cos x}$ for the term ${\sqrt{\tan x}}$.
Calculate:
$$\lim_{x \to 0^+}\frac{\tan x \cdot \sqrt {\tan x}-\sin x \cdot \sqrt{\sin x}}{x^3 \sqrt{x}}$$
I don't know how to use L'Hôpital's Rule.
I tried to make $\tan x =\frac{\sin x}{\cos x}$ for the term ${\sqrt{\tan x}}$.
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment