Tuesday, 10 January 2017

limits - $lim_{x to 0^+}frac{tan x cdot sqrt {tan x}-sin x cdot sqrt{sin x}}{x^3 sqrt{x}}$

Calculate:
$$\lim_{x \to 0^+}\frac{\tan x \cdot \sqrt {\tan x}-\sin x \cdot \sqrt{\sin x}}{x^3 \sqrt{x}}$$



I don't know how to use L'Hôpital's Rule.




I tried to make $\tan x =\frac{\sin x}{\cos x}$ for the term ${\sqrt{\tan x}}$.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...